3.1247 \(\int \cos ^2(c+d x) \cot ^4(c+d x) (a+b \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=177 \[ \frac{\left (2 a^2-b^2\right ) \cot (c+d x)}{d}+\frac{\left (4 a^2-7 b^2\right ) \sin (c+d x) \cos (c+d x)}{8 d}+\frac{5}{8} x \left (4 a^2-3 b^2\right )-\frac{a^2 \cot ^3(c+d x)}{3 d}-\frac{5 a b \cos ^3(c+d x)}{3 d}-\frac{5 a b \cos (c+d x)}{d}-\frac{a b \cos ^3(c+d x) \cot ^2(c+d x)}{d}+\frac{5 a b \tanh ^{-1}(\cos (c+d x))}{d}-\frac{b^2 \sin (c+d x) \cos ^3(c+d x)}{4 d} \]

[Out]

(5*(4*a^2 - 3*b^2)*x)/8 + (5*a*b*ArcTanh[Cos[c + d*x]])/d - (5*a*b*Cos[c + d*x])/d - (5*a*b*Cos[c + d*x]^3)/(3
*d) + ((2*a^2 - b^2)*Cot[c + d*x])/d - (a*b*Cos[c + d*x]^3*Cot[c + d*x]^2)/d - (a^2*Cot[c + d*x]^3)/(3*d) + ((
4*a^2 - 7*b^2)*Cos[c + d*x]*Sin[c + d*x])/(8*d) - (b^2*Cos[c + d*x]^3*Sin[c + d*x])/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.439628, antiderivative size = 177, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 29, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.31, Rules used = {2911, 2592, 288, 302, 206, 456, 1259, 1261, 203} \[ \frac{\left (2 a^2-b^2\right ) \cot (c+d x)}{d}+\frac{\left (4 a^2-7 b^2\right ) \sin (c+d x) \cos (c+d x)}{8 d}+\frac{5}{8} x \left (4 a^2-3 b^2\right )-\frac{a^2 \cot ^3(c+d x)}{3 d}-\frac{5 a b \cos ^3(c+d x)}{3 d}-\frac{5 a b \cos (c+d x)}{d}-\frac{a b \cos ^3(c+d x) \cot ^2(c+d x)}{d}+\frac{5 a b \tanh ^{-1}(\cos (c+d x))}{d}-\frac{b^2 \sin (c+d x) \cos ^3(c+d x)}{4 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2*Cot[c + d*x]^4*(a + b*Sin[c + d*x])^2,x]

[Out]

(5*(4*a^2 - 3*b^2)*x)/8 + (5*a*b*ArcTanh[Cos[c + d*x]])/d - (5*a*b*Cos[c + d*x])/d - (5*a*b*Cos[c + d*x]^3)/(3
*d) + ((2*a^2 - b^2)*Cot[c + d*x])/d - (a*b*Cos[c + d*x]^3*Cot[c + d*x]^2)/d - (a^2*Cot[c + d*x]^3)/(3*d) + ((
4*a^2 - 7*b^2)*Cos[c + d*x]*Sin[c + d*x])/(8*d) - (b^2*Cos[c + d*x]^3*Sin[c + d*x])/(4*d)

Rule 2911

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^2, x_Symbol] :> Dist[(2*a*b)/d, Int[(g*Cos[e + f*x])^p*(d*Sin[e + f*x])^(n + 1), x], x] + Int[(g*Cos[e
+ f*x])^p*(d*Sin[e + f*x])^n*(a^2 + b^2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && NeQ[a^2 -
 b^2, 0]

Rule 2592

Int[((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*tan[(e_.) + (f_.)*(x_)]^(n_.), x_Symbol] :> With[{ff = FreeFactors[S
in[e + f*x], x]}, Dist[ff/f, Subst[Int[(ff*x)^(m + n)/(a^2 - ff^2*x^2)^((n + 1)/2), x], x, (a*Sin[e + f*x])/ff
], x]] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n + 1)/2]

Rule 288

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^
n)^(p + 1))/(b*n*(p + 1)), x] - Dist[(c^n*(m - n + 1))/(b*n*(p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^(p + 1), x
], x] /; FreeQ[{a, b, c}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m + 1, n] &&  !ILtQ[(m + n*(p + 1) + 1)/n, 0]
&& IntBinomialQ[a, b, c, n, m, p, x]

Rule 302

Int[(x_)^(m_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Int[PolynomialDivide[x^m, a + b*x^n, x], x] /; FreeQ[{a,
b}, x] && IGtQ[m, 0] && IGtQ[n, 0] && GtQ[m, 2*n - 1]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 456

Int[(x_)^(m_)*((a_) + (b_.)*(x_)^2)^(p_)*((c_) + (d_.)*(x_)^2), x_Symbol] :> Simp[((-a)^(m/2 - 1)*(b*c - a*d)*
x*(a + b*x^2)^(p + 1))/(2*b^(m/2 + 1)*(p + 1)), x] + Dist[1/(2*b^(m/2 + 1)*(p + 1)), Int[x^m*(a + b*x^2)^(p +
1)*ExpandToSum[2*b*(p + 1)*Together[(b^(m/2)*(c + d*x^2) - (-a)^(m/2 - 1)*(b*c - a*d)*x^(-m + 2))/(a + b*x^2)]
 - ((-a)^(m/2 - 1)*(b*c - a*d))/x^m, x], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && LtQ[p, -1] &
& ILtQ[m/2, 0] && (IntegerQ[p] || EqQ[m + 2*p + 1, 0])

Rule 1259

Int[(x_)^(m_)*((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[((-d)^(
m/2 - 1)*(c*d^2 - b*d*e + a*e^2)^p*x*(d + e*x^2)^(q + 1))/(2*e^(2*p + m/2)*(q + 1)), x] + Dist[(-d)^(m/2 - 1)/
(2*e^(2*p)*(q + 1)), Int[x^m*(d + e*x^2)^(q + 1)*ExpandToSum[Together[(1*(2*(-d)^(-(m/2) + 1)*e^(2*p)*(q + 1)*
(a + b*x^2 + c*x^4)^p - ((c*d^2 - b*d*e + a*e^2)^p/(e^(m/2)*x^m))*(d + e*(2*q + 3)*x^2)))/(d + e*x^2)], x], x]
, x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && ILtQ[q, -1] && ILtQ[m/2, 0]

Rule 1261

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> In
t[ExpandIntegrand[(f*x)^m*(d + e*x^2)^q*(a + b*x^2 + c*x^4)^p, x], x] /; FreeQ[{a, b, c, d, e, f, m, q}, x] &&
 NeQ[b^2 - 4*a*c, 0] && IGtQ[p, 0] && IGtQ[q, -2]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cos ^2(c+d x) \cot ^4(c+d x) (a+b \sin (c+d x))^2 \, dx &=(2 a b) \int \cos ^3(c+d x) \cot ^3(c+d x) \, dx+\int \cos ^2(c+d x) \cot ^4(c+d x) \left (a^2+b^2 \sin ^2(c+d x)\right ) \, dx\\ &=\frac{\operatorname{Subst}\left (\int \frac{a^2+\left (a^2+b^2\right ) x^2}{x^4 \left (1+x^2\right )^3} \, dx,x,\tan (c+d x)\right )}{d}-\frac{(2 a b) \operatorname{Subst}\left (\int \frac{x^6}{\left (1-x^2\right )^2} \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac{a b \cos ^3(c+d x) \cot ^2(c+d x)}{d}-\frac{b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac{\operatorname{Subst}\left (\int \frac{-4 a^2-4 b^2 x^2+3 b^2 x^4}{x^4 \left (1+x^2\right )^2} \, dx,x,\tan (c+d x)\right )}{4 d}+\frac{(5 a b) \operatorname{Subst}\left (\int \frac{x^4}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac{a b \cos ^3(c+d x) \cot ^2(c+d x)}{d}+\frac{\left (4 a^2-7 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac{\operatorname{Subst}\left (\int \frac{-8 a^2+8 \left (a^2-b^2\right ) x^2+\left (-4 a^2+7 b^2\right ) x^4}{x^4 \left (1+x^2\right )} \, dx,x,\tan (c+d x)\right )}{8 d}+\frac{(5 a b) \operatorname{Subst}\left (\int \left (-1-x^2+\frac{1}{1-x^2}\right ) \, dx,x,\cos (c+d x)\right )}{d}\\ &=-\frac{5 a b \cos (c+d x)}{d}-\frac{5 a b \cos ^3(c+d x)}{3 d}-\frac{a b \cos ^3(c+d x) \cot ^2(c+d x)}{d}+\frac{\left (4 a^2-7 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}-\frac{\operatorname{Subst}\left (\int \left (-\frac{8 a^2}{x^4}+\frac{8 \left (2 a^2-b^2\right )}{x^2}-\frac{5 \left (4 a^2-3 b^2\right )}{1+x^2}\right ) \, dx,x,\tan (c+d x)\right )}{8 d}+\frac{(5 a b) \operatorname{Subst}\left (\int \frac{1}{1-x^2} \, dx,x,\cos (c+d x)\right )}{d}\\ &=\frac{5 a b \tanh ^{-1}(\cos (c+d x))}{d}-\frac{5 a b \cos (c+d x)}{d}-\frac{5 a b \cos ^3(c+d x)}{3 d}+\frac{\left (2 a^2-b^2\right ) \cot (c+d x)}{d}-\frac{a b \cos ^3(c+d x) \cot ^2(c+d x)}{d}-\frac{a^2 \cot ^3(c+d x)}{3 d}+\frac{\left (4 a^2-7 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}+\frac{\left (5 \left (4 a^2-3 b^2\right )\right ) \operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (c+d x)\right )}{8 d}\\ &=\frac{5}{8} \left (4 a^2-3 b^2\right ) x+\frac{5 a b \tanh ^{-1}(\cos (c+d x))}{d}-\frac{5 a b \cos (c+d x)}{d}-\frac{5 a b \cos ^3(c+d x)}{3 d}+\frac{\left (2 a^2-b^2\right ) \cot (c+d x)}{d}-\frac{a b \cos ^3(c+d x) \cot ^2(c+d x)}{d}-\frac{a^2 \cot ^3(c+d x)}{3 d}+\frac{\left (4 a^2-7 b^2\right ) \cos (c+d x) \sin (c+d x)}{8 d}-\frac{b^2 \cos ^3(c+d x) \sin (c+d x)}{4 d}\\ \end{align*}

Mathematica [A]  time = 6.25002, size = 336, normalized size = 1.9 \[ \frac{5 \left (4 a^2-3 b^2\right ) (c+d x)}{8 d}+\frac{\left (a^2-2 b^2\right ) \sin (2 (c+d x))}{4 d}+\frac{\csc \left (\frac{1}{2} (c+d x)\right ) \left (7 a^2 \cos \left (\frac{1}{2} (c+d x)\right )-3 b^2 \cos \left (\frac{1}{2} (c+d x)\right )\right )}{6 d}+\frac{\sec \left (\frac{1}{2} (c+d x)\right ) \left (3 b^2 \sin \left (\frac{1}{2} (c+d x)\right )-7 a^2 \sin \left (\frac{1}{2} (c+d x)\right )\right )}{6 d}-\frac{a^2 \cot \left (\frac{1}{2} (c+d x)\right ) \csc ^2\left (\frac{1}{2} (c+d x)\right )}{24 d}+\frac{a^2 \tan \left (\frac{1}{2} (c+d x)\right ) \sec ^2\left (\frac{1}{2} (c+d x)\right )}{24 d}-\frac{9 a b \cos (c+d x)}{2 d}-\frac{a b \cos (3 (c+d x))}{6 d}-\frac{a b \csc ^2\left (\frac{1}{2} (c+d x)\right )}{4 d}+\frac{a b \sec ^2\left (\frac{1}{2} (c+d x)\right )}{4 d}-\frac{5 a b \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{d}+\frac{5 a b \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right )}{d}-\frac{b^2 \sin (4 (c+d x))}{32 d} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cos[c + d*x]^2*Cot[c + d*x]^4*(a + b*Sin[c + d*x])^2,x]

[Out]

(5*(4*a^2 - 3*b^2)*(c + d*x))/(8*d) - (9*a*b*Cos[c + d*x])/(2*d) - (a*b*Cos[3*(c + d*x)])/(6*d) + ((7*a^2*Cos[
(c + d*x)/2] - 3*b^2*Cos[(c + d*x)/2])*Csc[(c + d*x)/2])/(6*d) - (a*b*Csc[(c + d*x)/2]^2)/(4*d) - (a^2*Cot[(c
+ d*x)/2]*Csc[(c + d*x)/2]^2)/(24*d) + (5*a*b*Log[Cos[(c + d*x)/2]])/d - (5*a*b*Log[Sin[(c + d*x)/2]])/d + (a*
b*Sec[(c + d*x)/2]^2)/(4*d) + (Sec[(c + d*x)/2]*(-7*a^2*Sin[(c + d*x)/2] + 3*b^2*Sin[(c + d*x)/2]))/(6*d) + ((
a^2 - 2*b^2)*Sin[2*(c + d*x)])/(4*d) - (b^2*Sin[4*(c + d*x)])/(32*d) + (a^2*Sec[(c + d*x)/2]^2*Tan[(c + d*x)/2
])/(24*d)

________________________________________________________________________________________

Maple [A]  time = 0.089, size = 321, normalized size = 1.8 \begin{align*} -{\frac{{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{3\,d \left ( \sin \left ( dx+c \right ) \right ) ^{3}}}+{\frac{4\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{3\,d\sin \left ( dx+c \right ) }}+{\frac{4\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{5}\sin \left ( dx+c \right ) }{3\,d}}+{\frac{5\,{a}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sin \left ( dx+c \right ) }{3\,d}}+{\frac{5\,{a}^{2}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{2\,d}}+{\frac{5\,{a}^{2}x}{2}}+{\frac{5\,{a}^{2}c}{2\,d}}-{\frac{ab \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}}-{\frac{ab \left ( \cos \left ( dx+c \right ) \right ) ^{5}}{d}}-{\frac{5\,ab \left ( \cos \left ( dx+c \right ) \right ) ^{3}}{3\,d}}-5\,{\frac{ab\cos \left ( dx+c \right ) }{d}}-5\,{\frac{ab\ln \left ( \csc \left ( dx+c \right ) -\cot \left ( dx+c \right ) \right ) }{d}}-{\frac{{b}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{7}}{d\sin \left ( dx+c \right ) }}-{\frac{{b}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{5}\sin \left ( dx+c \right ) }{d}}-{\frac{5\,{b}^{2} \left ( \cos \left ( dx+c \right ) \right ) ^{3}\sin \left ( dx+c \right ) }{4\,d}}-{\frac{15\,{b}^{2}\cos \left ( dx+c \right ) \sin \left ( dx+c \right ) }{8\,d}}-{\frac{15\,{b}^{2}x}{8}}-{\frac{15\,{b}^{2}c}{8\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^6*csc(d*x+c)^4*(a+b*sin(d*x+c))^2,x)

[Out]

-1/3/d*a^2/sin(d*x+c)^3*cos(d*x+c)^7+4/3/d*a^2/sin(d*x+c)*cos(d*x+c)^7+4/3*a^2*cos(d*x+c)^5*sin(d*x+c)/d+5/3*a
^2*cos(d*x+c)^3*sin(d*x+c)/d+5/2*a^2*cos(d*x+c)*sin(d*x+c)/d+5/2*a^2*x+5/2/d*c*a^2-1/d*a*b/sin(d*x+c)^2*cos(d*
x+c)^7-a*b*cos(d*x+c)^5/d-5/3*a*b*cos(d*x+c)^3/d-5*a*b*cos(d*x+c)/d-5/d*a*b*ln(csc(d*x+c)-cot(d*x+c))-1/d*b^2/
sin(d*x+c)*cos(d*x+c)^7-b^2*cos(d*x+c)^5*sin(d*x+c)/d-5/4*b^2*cos(d*x+c)^3*sin(d*x+c)/d-15/8*b^2*cos(d*x+c)*si
n(d*x+c)/d-15/8*b^2*x-15/8/d*b^2*c

________________________________________________________________________________________

Maxima [A]  time = 1.52359, size = 255, normalized size = 1.44 \begin{align*} \frac{4 \,{\left (15 \, d x + 15 \, c + \frac{15 \, \tan \left (d x + c\right )^{4} + 10 \, \tan \left (d x + c\right )^{2} - 2}{\tan \left (d x + c\right )^{5} + \tan \left (d x + c\right )^{3}}\right )} a^{2} - 4 \,{\left (4 \, \cos \left (d x + c\right )^{3} - \frac{6 \, \cos \left (d x + c\right )}{\cos \left (d x + c\right )^{2} - 1} + 24 \, \cos \left (d x + c\right ) - 15 \, \log \left (\cos \left (d x + c\right ) + 1\right ) + 15 \, \log \left (\cos \left (d x + c\right ) - 1\right )\right )} a b - 3 \,{\left (15 \, d x + 15 \, c + \frac{15 \, \tan \left (d x + c\right )^{4} + 25 \, \tan \left (d x + c\right )^{2} + 8}{\tan \left (d x + c\right )^{5} + 2 \, \tan \left (d x + c\right )^{3} + \tan \left (d x + c\right )}\right )} b^{2}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4*(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

1/24*(4*(15*d*x + 15*c + (15*tan(d*x + c)^4 + 10*tan(d*x + c)^2 - 2)/(tan(d*x + c)^5 + tan(d*x + c)^3))*a^2 -
4*(4*cos(d*x + c)^3 - 6*cos(d*x + c)/(cos(d*x + c)^2 - 1) + 24*cos(d*x + c) - 15*log(cos(d*x + c) + 1) + 15*lo
g(cos(d*x + c) - 1))*a*b - 3*(15*d*x + 15*c + (15*tan(d*x + c)^4 + 25*tan(d*x + c)^2 + 8)/(tan(d*x + c)^5 + 2*
tan(d*x + c)^3 + tan(d*x + c)))*b^2)/d

________________________________________________________________________________________

Fricas [A]  time = 1.90171, size = 635, normalized size = 3.59 \begin{align*} \frac{6 \, b^{2} \cos \left (d x + c\right )^{7} - 3 \,{\left (4 \, a^{2} - 3 \, b^{2}\right )} \cos \left (d x + c\right )^{5} + 20 \,{\left (4 \, a^{2} - 3 \, b^{2}\right )} \cos \left (d x + c\right )^{3} + 60 \,{\left (a b \cos \left (d x + c\right )^{2} - a b\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 60 \,{\left (a b \cos \left (d x + c\right )^{2} - a b\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) \sin \left (d x + c\right ) - 15 \,{\left (4 \, a^{2} - 3 \, b^{2}\right )} \cos \left (d x + c\right ) -{\left (16 \, a b \cos \left (d x + c\right )^{5} - 15 \,{\left (4 \, a^{2} - 3 \, b^{2}\right )} d x \cos \left (d x + c\right )^{2} + 80 \, a b \cos \left (d x + c\right )^{3} + 15 \,{\left (4 \, a^{2} - 3 \, b^{2}\right )} d x - 120 \, a b \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{24 \,{\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4*(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

1/24*(6*b^2*cos(d*x + c)^7 - 3*(4*a^2 - 3*b^2)*cos(d*x + c)^5 + 20*(4*a^2 - 3*b^2)*cos(d*x + c)^3 + 60*(a*b*co
s(d*x + c)^2 - a*b)*log(1/2*cos(d*x + c) + 1/2)*sin(d*x + c) - 60*(a*b*cos(d*x + c)^2 - a*b)*log(-1/2*cos(d*x
+ c) + 1/2)*sin(d*x + c) - 15*(4*a^2 - 3*b^2)*cos(d*x + c) - (16*a*b*cos(d*x + c)^5 - 15*(4*a^2 - 3*b^2)*d*x*c
os(d*x + c)^2 + 80*a*b*cos(d*x + c)^3 + 15*(4*a^2 - 3*b^2)*d*x - 120*a*b*cos(d*x + c))*sin(d*x + c))/((d*cos(d
*x + c)^2 - d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**6*csc(d*x+c)**4*(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [B]  time = 1.25046, size = 494, normalized size = 2.79 \begin{align*} \frac{a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 6 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 120 \, a b \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right ) - 27 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 12 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 15 \,{\left (4 \, a^{2} - 3 \, b^{2}\right )}{\left (d x + c\right )} + \frac{220 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 27 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 6 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - a^{2}}{\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3}} - \frac{2 \,{\left (12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 27 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} + 144 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{6} + 12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 3 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 336 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} - 12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 304 \, a b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 27 \, b^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 112 \, a b\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 1\right )}^{4}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^6*csc(d*x+c)^4*(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

1/24*(a^2*tan(1/2*d*x + 1/2*c)^3 + 6*a*b*tan(1/2*d*x + 1/2*c)^2 - 120*a*b*log(abs(tan(1/2*d*x + 1/2*c))) - 27*
a^2*tan(1/2*d*x + 1/2*c) + 12*b^2*tan(1/2*d*x + 1/2*c) + 15*(4*a^2 - 3*b^2)*(d*x + c) + (220*a*b*tan(1/2*d*x +
 1/2*c)^3 + 27*a^2*tan(1/2*d*x + 1/2*c)^2 - 12*b^2*tan(1/2*d*x + 1/2*c)^2 - 6*a*b*tan(1/2*d*x + 1/2*c) - a^2)/
tan(1/2*d*x + 1/2*c)^3 - 2*(12*a^2*tan(1/2*d*x + 1/2*c)^7 - 27*b^2*tan(1/2*d*x + 1/2*c)^7 + 144*a*b*tan(1/2*d*
x + 1/2*c)^6 + 12*a^2*tan(1/2*d*x + 1/2*c)^5 - 3*b^2*tan(1/2*d*x + 1/2*c)^5 + 336*a*b*tan(1/2*d*x + 1/2*c)^4 -
 12*a^2*tan(1/2*d*x + 1/2*c)^3 + 3*b^2*tan(1/2*d*x + 1/2*c)^3 + 304*a*b*tan(1/2*d*x + 1/2*c)^2 - 12*a^2*tan(1/
2*d*x + 1/2*c) + 27*b^2*tan(1/2*d*x + 1/2*c) + 112*a*b)/(tan(1/2*d*x + 1/2*c)^2 + 1)^4)/d